Spinal Botulinum Neurotoxin B: Effects on Afferent Transmitter Release and Nociceptive Processing

نویسندگان

  • Polly P. Huang
  • Imran Khan
  • Mohammed S. A. Suhail
  • Shelle Malkmus
  • Tony L. Yaksh
چکیده

Botulinum neurotoxin B (BoNT-B) mediates proteolytic cleavage of VAMP I/II (synaptobrevins I/II), which prevents vesicle-membrane fusion and blocks neurotransmitter release. In the present study, we investigated the effects of BoNT-B on neurotransmitter release in vivo from spinal primary afferent sensory fibers and the effects of this blockade on nociception. With intrathecally (IT) delivered BoNT-B in C57B/l6 mice, we characterized the effects of such block on the release of substance P (SP) from spinal afferent nociceptors (as measured by neurokinin-1 receptor, NK1-R, internalization), spinal neuronal activation (as indicated by spinal C-Fos expression) and nociceptive behavior after intraplantar (IPLT) formalin. In addition, we investigated the effect of IT BoNT-B on spinal nerve ligation-induced tactile allodynia. A single percutaneous IT injection of BoNT-B 0.5 U at 2 or 5 days prior to IPLT formalin reduced NK1-R internalization and C-Fos expression. These effects correlated with BoNT-B cleavage of VAMPI/II protein in tissue lysate. IT BoNT-B also produced a corresponding reduction in phase 2 of formalin-evoked flinching behavior for over 30 days after IT injection. In mice with spinal nerve ligation (SNL), tactile allodynia was observed, which was attenuated by IT BoNT-B 0.5 U over the next 15 days, as compared to vehicle animals. These effects were observed without effects upon motor function. The specificity of the IT BoNT-B effect is indicated by: i) IT co-injection of BoNT-B and anti-BoNTB antibody prevented effects on SP release, and ii) IT BoNT-B 50 U in the Sprague Dawley rats showed no effect on formalin-evoked flinching or SNL-induced tactile allodynia, which is consistent with rat resistance to BoNT-B. IT BoNT-B blocks transmitter release from spinal primary afferents, and attenuates inflammatory nociceptive response and spinal nerve injury-induced neuropathic pain, in the absence of motor impairment. These observations provide an initial assessment of the ability of IT BoNT-B to regulate spinal nociceptive processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Current Status and Future Directions of Botulinum Neurotoxins for Targeting Pain Processing

Current evidence suggests that botulinum neurotoxins (BoNTs) A1 and B1, given locally into peripheral tissues such as skin, muscles, and joints, alter nociceptive processing otherwise initiated by inflammation or nerve injury in animal models and humans. Recent data indicate that such locally delivered BoNTs exert not only local action on sensory afferent terminals but undergo transport to cent...

متن کامل

Assessment: botulinum neurotoxin for the treatment of spasticity (an evidence-based review).

INTRODUCTION Pharmacology and immunology of botulinum toxin. Botulinum neurotoxin (BoNT) is a microbial protein that exists in seven serotypes, designated A through G. Although the individual serotypes are immunologically distinct, all members of the group possess similar subunit structures, act on the same target organs, and produce similar functional outcomes.1,2 Each molecule is typically re...

متن کامل

Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential.

Calcitonin-gene-related peptide (CGRP), a potent vasodilator that mediates inflammatory pain, is elevated in migraine; nevertheless, little is known about its release from sensory neurons. In this study, CGRP was found to occur in the majority of neurons from rat trigeminal ganglia, together with the three exocytotic SNAREs [SNAP25, syntaxin 1 and the synaptobrevin (Sbr, also known as VAMP) iso...

متن کامل

Botulinum toxin type A blocks the morphological changes induced by chemical stimulation on the presynaptic membrane of Torpedo synaptosomes.

The action of botulinum neurotoxin on acetylcholine release, and on the structural changes at the presynaptic membrane associated with the transmitter release, was studied by using a subcellular fraction of cholinergic nerve terminals (synaptosomes) isolated from the Torpedo electric organ. Acetylcholine and ATP release were continuously monitored by chemiluminescent methods. To catch the membr...

متن کامل

Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential.

Excessive release of inflammatory/pain mediators from peripheral sensory afferents renders nerve endings hyper-responsive, causing central sensitization and chronic pain. Herein, the basal release of proinflammatory calcitonin gene-related peptide (CGRP) was shown to increase the excitability of trigeminal sensory neurons in brainstem slices via CGRP1 receptors because the effect was negated by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011